Äñ´ó´óÓ°Ôº

Skip to main content

Publications search

Found 37284 matches. Displaying 31-40
Muret K, Le Goff V, Dandine-Roulland C, Hotz C, Jean-Louis F, Boisson B, Mesr...
Show All Authors

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2024 OCT; 25(19):? Article 10374
Show Abstract
Hidradenitis suppurativa (HS) is a chronic skin disease characterized by painful, recurrent abscesses, nodules, and scarring, primarily in skin folds. The exact causes of HS are multifactorial, involving genetic, hormonal, and environmental factors. It is associated with systemic diseases such as metabolic syndrome and inflammatory bowel disease. Genetic studies have identified mutations in the gamma-secretase complex that affect Notch signaling pathways critical for skin cell regulation. Despite its high heritability, most reported HS cases do not follow a simple genetic pattern. In this article, we performed whole-exome sequencing (WES) on a cohort of 100 individuals with HS, and we provide a comprehensive review of the variants known to be described or associated with HS. 91 variants were associated with the gamma-secretase complex, and 78 variants were associated with other genes involved in the Notch pathway, keratinization, or immune response. Through this new genetic analysis, we have added ten new variants to the existing catalogs. All variants are available in a .vcf file and are provided as a resource for future studies.
Bonilla SL, Jones AN, Incarnato D
Show All Authors

CURRENT OPINION IN STRUCTURAL BIOLOGY 2024 OCT; 88(?):? Article 102908
Show Abstract
RNA's ability to form and interconvert between multiple secondary and tertiary structures is critical to its functional versatility and the traditional view of RNA structures as static entities has shifted towards understanding them as dynamic conformational ensembles. In this review we discuss RNA structural ensembles and their dynamics, highlighting the concept of conformational energy landscapes as a unifying framework for understanding RNA processes such as folding, misfolding, conformational changes, and complex formation. Ongoing advancements in cryo-electron microscopy and chemical probing techniques are significantly enhancing our ability to investigate multiple structures adopted by conformationally dynamic RNAs, while traditional methods such as nuclear magnetic resonance spectroscopy continue to play a crucial role in providing high-resolution, quantitative spatial and temporal information. We discuss how these methods, when used synergistically, can provide a comprehensive understanding of RNA conformational ensembles, offering new insights into their regulatory functions.
Chatterjee S, Naeli P, Onar O, Simms N, Garzia A, Hackett A, Coyle K, Snell P...
Show All Authors

NUCLEIC ACIDS RESEARCH 2024 OCT 1; 52(20):12534-12548
Show Abstract
Ribosome quality control (RQC) resolves collided ribosomes, thus preventing their cytotoxic effects. The chemotherapeutic agent 5-Fluorouracil (5FU) is best known for its misincorporation into DNA and inhibition of thymidylate synthase. However, while a major determinant of 5FU's anticancer activity is its misincorporation into RNAs, the mechanisms by which cancer cells overcome the RNA-dependent 5FU toxicity remain ill-defined. Here, we report a role for RQC in mitigating the cytotoxic effects of 5FU. We show that 5FU treatment results in rapid induction of the mTOR signalling pathway, enhanced rate of mRNA translation initiation, and increased ribosome collisions. Consistently, a defective RQC exacerbates the 5FU-induced cell death, which is mitigated by blocking mTOR pathway or mRNA translation initiation. Furthermore, 5FU treatment enhances the expression of the key RQC factors ZNF598 and GIGYF2 via an mTOR-dependent post-translational mechanism. This adaptation likely mitigates the cytotoxic consequences of increased ribosome collisions upon 5FU treatment. Graphical Abstract
Netzer WJ, Sinha A, Ghias M, Chang E, Gindinova K, Mui E, Seo JS, Sinha SC
Show All Authors

FRONTIERS IN CHEMISTRY 2024 OCT 8; 12(?):? Article 1381205
Show Abstract
We previously showed that the anticancer drug imatinib mesylate (IMT, trade name: Gleevec) and a chemically distinct compound, DV2-103 (a kinase-inactive derivative of the potent Abl and Src kinase inhibitor, PD173955) lower A beta levels at low micromolar concentrations primarily through a lysosome-dependent mechanism that renders APP less susceptible to proteolysis by BACE1 without directly inhibiting BACE1 enzymatic activity, or broadly inhibiting the processing of other BACE1 substrates. Additionally, IMT indirectly inhibits gamma-secretase and stimulates autophagy, and thus may decrease A beta levels through multiple pathways. In two recent studies we demonstrated similar effects on APP metabolism caused by derivatives of IMT and DV2-103. In the present study, we synthesized and tested radically altered IMT isomers (IMTi's) that possess medium structural similarity to IMT. Independent of structural similarity, these isomers manifest widely differing potencies in altering APP metabolism. These will enable us to choose the most potent isomers for further derivatization.
Arango-Franco CA, Rojas J, Firacative C, Migaud M, Agudelo CI, Franco JL, Cas...
Show All Authors

JOURNAL OF CLINICAL IMMUNOLOGY 2024 OCT; 44(7):? Article 163
Show Abstract
Background Cryptococcosis is a life-threatening disease caused by Cryptococcus neoformans or C. gattii. Neutralizing autoantibodies (auto-Abs) against granulocyte-macrophage colony-stimulating factor (GM-CSF) in otherwise healthy adults with cryptococcal meningitis have been described since 2013. We searched for neutralizing auto-Abs in sera collected from Colombian patients with non-HIV-associated cryptococcosis in a retrospective national cohort from 1997 to 2016. Methods We reviewed clinical and laboratory records and assessed the presence of neutralizing auto-Abs against GM-CSF in 30 HIV negative adults with cryptococcosis (13 caused by C. gattii and 17 caused by C. neoformans). Results We detected neutralizing auto-Abs against GM-CSF in the sera of 10 out of 13 (77%) patients infected with C. gattii and one out of 17 (6%) patients infected with C. neoformans. Conclusions We report eleven Colombian patients diagnosed with cryptococcosis who had auto-Abs that neutralize GM-CSF. Among these patients, ten were infected with C. gattii and only one with C. neoformans.
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gna...
Show All Authors

CELL 2024 OCT 3; 187(20):?
Show Abstract
Immunization with mosaic-8b (nanoparticles presenting 8 SARS-like betacoronavirus [sarbecovirus] receptor-binding domains [RBDs]) elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated the effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding the greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate mapping, in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Hagen T, Litke JL, Nasir N, Hou Q, Jaffrey SR
Show All Authors

CELL CHEMICAL BIOLOGY 2024 OCT 17; 31(10):?
Show Abstract
Small molecule-regulated RNA devices have the potential to modulate diverse aspects of cellular function, but the small molecules used to date have potential toxicities limiting their use in cells. Here we describe a method for creating drug-regulated RNA nanodevices (RNs) using acyclovir, a biologically compatible small molecule with minimal toxicity. Our modular approach involves a scaffold comprising a central F30 three-way junction, an integrated acyclovir aptamer on the input arm, and a variable effector-binding aptamer on the output arm. This design allows for the rapid engineering of acyclovir-regulated RNs, facilitating temporal, tunable, and reversible control of intracellular aptamers. We demonstrate the control of the Broccoli aptamer and the iron-responsive element (IRE) by acyclovir. Regulating the IRE with acyclovir enables precise control over iron-regulatory protein (IRP) sequestration, consequently promoting the inhibition of ferroptosis. Overall, the method described here provides a platform for transforming aptamers into acyclovir-controllable antagonists against physiologic target proteins.
Bohlen J, Bagaric I, Vatovec T, Ogishi M, Ahmed SF, Cederholm A, Buetow L, So...
Show All Authors

JOURNAL OF CLINICAL INVESTIGATION 2024 OCT 15; 134(20):? Article e181604
Show Abstract
Patients heterozygous for germline CBL loss-of-function (LOF) variants can develop myeloid malignancy, autoinflammation, or both, if some or all of their leukocytes become homozygous for these variants through somatic loss of heterozygosity (LOH) via uniparental isodisomy. We observed an upregulation of the inflammatory gene expression signature in whole blood from these patients, mimicking monogenic inborn errors underlying autoinflammation. Remarkably, these patients had constitutively activated monocytes that secreted 10 to 100 times more inflammatory cytokines than those of healthy individuals and CBL LOF heterozygotes without LOH. CBL-LOH hematopoietic stem and progenitor cells (HSPCs) outgrew the other cells, accounting for the persistence of peripheral monocytes homozygous for the CBL LOF variant. ERIC pathway activation was required for the excessive production of cytokines by both resting and stimulated CBL-LOF monocytes, as shown in monocytic cell lines. Finally, we found that about 1 in 10,000 individuals in the UIC Biobank were heterozygous for CBL LOF variants and that these carriers were at high risk of hematological and inflammatory conditions.
Ortega J, Wahba L, Seemann J, Chen SY, Fire AZ, Arur S
Show All Authors

SCIENCE ADVANCES 2024 OCT 2; 10(40):? Article eadp0466
Show Abstract
Pachytene piRNAs, a Piwi-interacting RNA subclass in mammals, are hypothesized to regulate non-transposon sequences during spermatogenesis. Caenorhabditis elegans piRNAs, the 21URNAs, are implicated in regulating coding sequences; the messenger RNA targets and biological processes they control during spermatogenesis are largely unknown. We demonstrate that loss of 21URNAs compromises homolog pairing and makes it permissive for nonhomologous synapsis resulting in defects in crossover formation and chromosome segregation during spermatogenesis. We identify Polo-like kinase 3 (PLK-3), among others, as a 21URNA target. 21URNA activity restricts PLK-3 protein to proliferative cells, and expansion of PLK-3 in pachytene overlaps with the meiotic defects. Removal of plk-3 results in quantitative genetic suppression of the meiotic defects. One discrete 21URNA inhibits PLK-3 expression in late pachytene cells. Together, these results suggest that the 21URNAs function as pachytene piRNAs during C. elegans spermatogenesis. We identify their targets and meiotic events and highlight the remarkable intricacy of this multi-effector mechanism during spermatogenesis.
Delbeau M, Froom R, Landick R, Darst SA, Campbell EA
Show All Authors

CURRENT OPINION IN MICROBIOLOGY 2024 OCT; 81(?):? Article 102540
Show Abstract
RNA polymerase (RNAP), the central enzyme of transcription, intermittently pauses during the elongation stage of RNA synthesis. Pausing provides an opportunity for regulatory events such as nascent RNA folding or the recruitment of transregulators. NusG (Spt5 in eukaryotes and archaea) regulates RNAP pausing and is the only transcription factor conserved across all cellular life. NusG is a multifunctional protein: its N-terminal domain (NGN) binds to RNAP, and its C-terminal KOW domain in bacteria interacts with transcription regulators such as ribosomes and termination factors. In Escherichia coli, NusG acts as an antipausing factor. However, recent studies have revealed that NusG has distinct transcriptional regulatory roles specific to bacterial clades with clinical implications. Here, we focus on NusG's dual roles in the regulation of pausing.